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The conventional aerodynamic analysis of flapping animal flight invokes the ‘quasi-
steady assumption’ to reduce a problem in dynamics to a succession of static
conditions: it is assumed that the instantaneous forces on a flapping wing are
equivalent to those for steady motion at the same instantaneous velocity and angle
of attack. The validity of this assumption and the importance of unsteady aerodynamic
effects have long been controversial topics. Weis-Fogh tested the assumption for
hovering animal flight, where unsteady effects are most pronounced, and concluded
that mostinsectsindeed hover according to the principles of quasi-steady aerodynamics.
The logical basis for his conclusion is reviewed in this paper, and it is shown that
the available evidence remains ambiguous.

The aerodynamics of hovering insect flight are re-examined in this series of six
papers, and a conclusion opposite to Weis-Fogh’s is tentatively reached. New
morphological and kinematic data for a variety of insects are presented in papers 11
and III, respectively” Paper IV offers an aerodynamic interpretation of the wing
kinematics and a discussion on the possible roles of different aerodynamic mechanisms.
A generalized vortex theory of hovering flight is derived in paper V, and provides
a method of estimating the mean lift, induced power and induced velocity for unsteady
as well as quasi-steady flight mechanisms. The new data, aerodynamic mechanisms
and vortex theory are all combined in paper VI for an analysis of the lift and power
requirements and other mechanical aspects of hovering flight.
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2 C.P. ELLINGTON

A large number of symbols are needed for the morphological, kinematic and
aerodynamic analyses. Most of them appear in more than one paper of the series,
and so a single comprehensive table defining the major symbols from all of the papers
is presented at the end of this paper.

1. INTRODUCTION

Research into the aerodynamic principles of flapping animal flight has long been hampered
by a limited repertoire of investigative tools. Aerodynamics is primarily a practical science,
concentrating on the forces experienced by a wing in steady motion. The effects of periodic
variations in wing attitude and velocity superimposed on a mean motion have been investigated
in flutter analysis, but such analytical treatments employ linearizations that restrict them to
small amplitude oscillations. The scope for theoretical analyses of animal flight has thus been
severely limited, and from necessity it is generally assumed that the instantaneous forces on
a flapping wing are those corresponding to steady motion at the same instantaneous velocity
and attitude, the quasi-steady assumption. Whether or not this assumption is valid for large
amplitude, high frequency motions has been the source of much controversy, and a decisive
test can only be accomplished by comparing measured instantaneous wing forces with those
predicted by the assumption. The aerodynamic characteristics of a wing in steady motion are
easily determined, but a direct measurement of the cyclic forces produced by flapping animal
wings has only been achieved recently (Cloupeau et al. 1979; Buckholtz 1981), and a
comprehensive test of the assumption using these difficult techniques is still lacking. Researchers
have therefore been forced to adopt a debatable assumption which could not be tested
experimentally.

The validity of the quasi-steady explanation of flapping flight can be tested theoretically only
in a proof-by-contradiction. The mean forces generated by the wings during a cycle are
calculated according to the quasi-steady assumption. If these forces do not satisfy the net force
balance of the flying animal, then the assumption must be false. If the mean quasi-steady forces
do satisfy the balance, then the only logical conclusion is that the assumption cannot be
discounted. The range of forces generated by wings is restricted by physical considerations:
unconventional aerodynamic mechanisms may produce mean, and even instantaneous, forces
very similar to the quasi-steady values. A satisfactory explanation of flight based on the
quasi-steady assumption cannot preclude alternative mechanisms.

The early quantitative studies on the aerodynamics of flapping flight have been reviewed
by Weis-Fogh & Jensen (1956). The available data on wing motion, the kinematics, were
incomplete and often inaccurate, so it was usually necessary to base the theories on rough
kinematic approximations. Some studies concluded that the wing forces were not consistent
with a quasi-steady mechanism, but the sources of error were too large for an unqualified
acceptance of the conclusions. In a classic series of papers Weis-Fogh and Jensen then presented
what is still the most complete study of flapping flight for the desert locust Schistocerca gregaria.
The kinematics of fast forward flight and the aerodynamic characteristics of the wings in steady
motion were measured (Weis-Fogh 1956; Jensen 1956). Jensen (1956) then combined these
data in a quasi-steady analysis and found that the mean calculated wing forces agreed well
with those measured from locusts flying in a wind tunnel. This is a very persuasive argument
for the quasi-steady explanation of fast forward flight, but it cannot be considered as a proof.
Indeed, the cyclic force measurements of Cloupeau et al. (1979) on Schistocerca indicate that the
quasi-steady mechanism is not a sufficient explanation in this case.
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THE QUASI-STEADY ANALYSIS OF HOVERING FLIGHT 3

Itis generally believed that the quasi-steady assumption is valid for fast forward flight because
of the low value of the reduced frequency parameter. This parameter, the ratio of a flapping
velocity of the wings to the forward flight velocity, may be expressed in several ways and was
introduced to animal flight studies by Walker (1925). At low values, the steady flight velocity
dominates the flow over the wings and reduces the spatial derivatives of the fluctuating
aerodynamic parameters. Thus unsteady aerodynamic effects are small compared with
quasi-steady ones.

Atslower flight speeds the reduced frequency parameter increases and unsteady effects should
become more important. Hovering flight presents the extreme condition where the flight
velocity is zero and the reduced frequency becomes infinite. Bennett (1966) and Weis-Fogh
(1972, 1973) emphasized the increased significance of unsteady effects to be found in hovering
flight. The wings accelerate and decelerate in a distance of only a few chord lengths: virtual
mass forces and unsteady circulatory effects may no longer be negligible. The amplitude of wing
rotation about a longitudinal axis during pronation and supination exceeds a right angle, and
the rotational velocity is comparable with the flapping velocity. Under these conditions the
aerodynamic behaviour of the wings may differ appreciably from the quasi-steady assumption.
By exaggerating the unsteady aerodynamic effects of flapping flight, hovering thus presents an
ideal case for the investigation of flight mechanisms.

In addition to its advantage in stressing unsteady effects, a study of hovering is useful from
other considerations. The force and moment balance during flight is simplified by the lack of
a net horizontal thrust, and the effects of body lift and body drag can be ignored. The absence
of a linear flight velocity acting in combination with the flapping velocity also reduces the
complexity of the mathematical treatment. Excluding brisk manoeuvres and climbing flight,
the lift coefficients of the wings during hovering must be greater than other types of flight
because the relative velocity of the wings is not enhanced by the flight velocity. Thus hovering
demands maximum lift coefficients, which are particularly useful when comparing the wing
performance with steady-state conditions. Finally, the total power expenditure of the animal
is greatest in hovering flight, providing a convenient case for physiological discussions.

Weis-Fogh (1972, 1973) applied a quasi-steady analysis to hovering animal flight and
concluded that ‘most insects perform normal hovering on the basis of the well-established
principles of steady-state flow’ (Weis-Fogh 1973). The aerodynamics of hovering flight are
re-examined in this study using new data and a new theory, and the opposite conclusion is
strongly indicated. Before this work is presented, the previous approaches to the problem
will be reviewed.

2. THE BLADE-ELEMENT THEORY

The usual aerodynamic treatment of animal flight is based on the blade-element theory of
propellers developed by Drzewiecki. Osborne (1951) derived the general equations that apply
to flapping flight. The fundamental unit of the analysis is the blade element, or wing element,
which is that portion of a wing between the radial distances r and r+dr from the wing base
(figure 1a). The aerodynamic force F on a wing element can be resolved into a component
normal to the flow velocity, called the lift, and a component parallel to the flow, called the
profile drag (figure 15). The lift L’ and profile drag Dy, for a wing section of spanwise width
dr are

L' =3pcUg Cy, (1)
D;)ro =1pcU?} CD,pro, (2)
1-2
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4 C.P.ELLINGTON

where p is the mass density of air, ¢ is the wing chord, and U, is the relative velocity component
perpendicular to the longitudinal wing axis. Any spanwise component of the relative velocity
is assumed to have no effect on these forces. Cy, and Cp_ ., are lift and profile drag coefficients,
which can be defined for unsteady as well as steady motion. According to the quasi-steady
assumption, though, these coefficients are functions only of the Reynolds number and angle
of attack of the relative wind for given profile characteristics. Equations (1) and (2) are resolved
into vertical and horizontal components, integrated along the wing length and averaged over
a cycle. For hovering flight the net force balance requires the mean vertical force to equal the
weight of the animal, and the mean horizontal force to be zero.

stroke
plane

Ficurke 1. (a) The wingbeat during hovering is approximately confined to a stroke plane, which is inclined at an
angle S to the horizontal. The aerodynamic parameters for a wing element of width dr and chord ¢ are shown
in a two-dimensional view in (4).

The relative velocity is the vector sum of the flapping velocity U and the induced velocities
of bound and wake vorticity. The blade-element theory ignores the existence of vortices,
however, and so can reveal nothing of the induced velocity. Following Osborne (1951), a mean
value of the vertical induced velocity w, is usually estimated by the Rankine-Froude axial
momentum theory of propellers.

One method of applying the blade-element analysis relies on successive stepwise solutions
of equations (1) and (2). Complete kinematic data are necessary for this approach: the motion
of the longitudinal wing axis, the geometrical angle of attack and the section profile must all
be known as functions of time and radial position. The angle of attack of the relative wind o
can then be calculated, and appropriate values of Cy, and Cp, py, selected from experimental
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THE QUASI-STEADY ANALYSIS OF HOVERING FLIGHT 5

measurements. This was the method used so effectively by Jensen (1956) in his study of forward
flight in the desert locust, but it becomes increasingly unreliable as the hovering state is
approached, where momentum considerations show that the wake induced velocity reaches a
maximum. For many hovering animals there are periods when the opposite wings are separated
by a distance of less than a chord length, so that the bound vorticity of the opposite wing will
also contribute significantly to the relative velocity of a wing. This effect can only be
approximated and, when coupled with the crude estimate of the wake induced velocity, a
considerable inaccuracy can be expected for the calculated value of a,. The lift coefficient is
strongly dependent on «,, so the solution to equation (1) is prone to serious error.

Osborne (1951) introduced an alternative method of analysis which solves for mean values
of the coefficients, Cp, and Cp, pro, satisfying the net force balance. This is equivalent to assuming
that the force coefficients are constant along the wing and throughout the cycle. The assumption
is not unreasonable, because the wings could well be operating at some optimal angle of attack.
For small insects like Drosophila, Cy, is nearly constant anyway over the range of a,. found during
flight (Vogel 1967). The mean lift coefficient is particularly interesting because it is also the
minimum value compatible with flight; if C, varies during the wing beat then some instantaneous
values must exceed Cr. The kinematic detail required for this method is greatly reduced since
only the motion of the longitudinal wing axis is needed. The geometrical angle of attack and
profile section of the wings are extremely difficult to measure accurately, and one of the
principal advantages of this method is its neglect of them. The double integrals of radius and
time produced by manipulation of equations (1) and (2) can be separated when the coefficients
are assumed to be constant; the resulting single integrals may then be reduced to morphological
and kinematic parameters, allowing simple expressions to be derived for Cp, and C—D,;
satisfying the integral constraints.

The theoretical investigations of hovering flight have usually relied on the mean coefficients
method (Weis-Fogh 1972, 1973; Ellington 1975; R. A. Norberg 1975; U. M. Norberg 1975,
1976). The animals studied so far can be divided into three functional groups, for which
different approximations can be used in the calculations outlined above. During a cycle the
wings beat roughly in a stroke plane, which is inclined at an angle #with respect to the horizontal
(figure 1a); it is the attitude of this stroke plane that distinguishes the groups.

3. KINEMATIC GROUPS
3.1. Horizontal stroke plane

The most commonly observed type of hovering is characterized by an approximately
horizontal stroke plane (figure 2a). This group was extensively discussed by Weis-Fogh (1972,
1973), who called the pattern normal hovering, and includes the hummingbirds (Stolpe & Zimmer
1939; Greenewalt 1960) and most insects (Weis-Fogh 1973). The amplitude of wing rotation
during pronation and supination is large, enabling the wings to operate at an angle of attack
favourable for lift on both the morphological downstroke and the upstroke (figure 24, 4). The
wake induced velocity is small with respect to the flapping velocity of the wings for this group,
resulting in a relative velocity very close to the horizontal (Ellington 1978, 1980). This justifies
using the horizontal flapping velocity for U, in equation (1) and neglecting any small drag
contributions to the net vertical force. A mean lift coefficient is then easily found such that the
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6 C.P.ELLINGTON

FiGure 2. (a). The wing tip path of a hummingbird Chlorostilbon aureoventris viewed from the side, illustrating a
horizontal stroke plane. The wing attitude is indicated on the path. () The wingbeat pattern for Melanotrochilus
Sfuscus viewed from above. Adapted from Stolpe & Zimmer (1939).

net lift given by the integral form of equation (1) balances the body mass. A mean drag
coefficient cannot be determined by the integral constraints, but once Cy, is calculated an
appropriate Cp, pr, may be selected from experimental measurements.

In his comparative survey of normal hovering animals, Weis-Fogh (1973) used simple
analytical expressions for wing chord and flapping velocity; a semi-elliptical wing planform
was used, and the flapping velocity was taken as simple harmonic motion. These are reasonable
approximations, permitting a quick calculation of Cy, but increase the error to an estimated
309,. Table 1 presents some of Weis-Fogh’s results and a Reynolds number Re for the wings;
the Reynolds number is based on the chord and the mean flapping velocity at 0.7 of the wing
length. Cy, for the small wasp Encarsia formosa is taken from Ellington (1975). In this case the
wing shape and velocity were not well represented by Weis-Fogh’s approximations and a more
detailed treatment was necessary.

3.2. Inclined stroke plane

Small passerine birds (Zimmer 1943; Brown 1963; U. M. Norberg 1975), bats (Eisentraut
1936; U. M. Norberg 1970, 1976) and the ‘true’ hover-flies of the subfamily Syrphinae
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THE QUASI-STEADY ANALYSIS OF HOVERING FLIGHT 7

(Weis-Fogh 1973) hover with the stroke plane inclined at a value of # between 30° and 40°
(figure 3). Dragonflies (Odonata) also hover in this manner, although £ is about 60° (R. A.
Norberg 1975). These animals appear to generate relatively small forces on the upstroke. The
dragonfly Aeschna juncea strongly supinates its wings on the upstroke, making the angle of attack
nearzero (R. A. Norberg 1975). Excluding the hummingbirds, vertebrate fliers are anatomically
unable to rotate their wings to this extent. The birds and bats partially flex their wings during
the upstroke, however, and the individual primaries of birds are also rotated to a negligible
angle of attack. Any lift on the upstroke of an inclined stroke plane would produce a large
horizontal thrust component, and this is probably the explanation for insignificant upstroke lift.
The mean force on the downstroke is thus primarily responsible for mass support.

(c)
A

Ficurk 3. The wingbeat of the long-eared bat Plecotus auritus, illustrating an inclined stroke plane during hovering
flight. Adapted from U. M. Norberg (1970).

The relative velocity U, on the downstroke should not be approximated by the flapping
velocity; because of the inclination of the stroke plane, the induced velocity will reduce the
value of U? well below U?. An accurate estimate of the induced velocity is therefore essential
in calculating the magnitude and direction of the relative velocity. It is likely that previous
estimates of the induced velocity are substantially too small (see papers V and VI), which led
to an incorrect consideration of downstroke profile drag by Ellington (1980). From the results
of R. A. Norberg (1975) and estimates based on papers V and VI, the value of Cy, required
for weight support on the downstroke of Aeschna juncea should lie between 3 and 4. U. M. Norberg
(1975) calculated that C, must equal 5.3 for the net vertical force on the downstroke to balance
the body mass of the pied flycatcher Ficedula hypoleuca. In paper VI, I estimate that Cy, for
Ficedula is about 6.0, so a value between 5 and 6 can be expected. It should be noted that in
both cases the morphological and kinematic data were not from the same animals, and so an
unknown inaccuracy is present.
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8 C.P.ELLINGTON

The effects of different assumptions about upstroke forces on the mean coefficients were
evaluated by U. M. Norberg (1976) in a thorough investigation of hovering in the bat Plecotus
auritus. Her results demonstrate that minimum coefficients occur when no lift is generated on
the upstroke, which then requires C;, = 3.1 on the downstroke; my estimate of Cy, is about 4.3
(paper VI), and so a value between 3 and 4 seems probable. She also commented on Weis-Fogh’s
(1973) analysis of Plecotus, noting that his procedural simplifications were invalid. This is also
true of his calculations for other animals using an inclined or vertical stroke plane.

FicUrE 4. The downstroke of a vertical take-off by Pieris brassicae. The stroke plane is vertical, and the wing motion
is perpendicular to the chord. The vortex pattern created by the downstroke is indicated, and the resulting
large-cored vortex ring is shown in vertical section in (d).

3.3. Vertical stroke plane

Inaddition to theinsects covered in paper I11, I have filmed the Large Cabbage White butterfly
Pieris brassicae L. in free flight. A unique kinematic pattern, an approximately vertical stroke
plane, is often seen during take-off and hovering. Figure 4 shows several stages of the down-
stroke which initiates a vertical take-off from a small platform. The wings are clapped together
dorsally at the start of the downstroke, and then ‘fling’ open (Weis-Fogh 1973) as in figure 4a.
The wings move with the chord perpendicular to their motion (figure 45, ¢) and nearly clap
together at the end of the downstroke (figure 4d). The body pitches nose-up and the wings
strongly supinate during the upstroke, which is not shown here, producing an angle of attack
near zero. Thus little force is generated on the upstroke, as for the inclined stroke plane.

The sustaining vertical force obviously results from the pressure drag on the wings during
the downstroke. A drag mechanism of flight has been suggested several times for flight at
Reynolds numbers below about 100 (Horridge 1956; R. A. Norberg 19724, b; Bennett 1973),
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THE QUASI-STEADY ANALYSIS OF HOVERING FLIGHT 9

where thick boundary layers reduce the steady-state lift coefficients of wings. The drag is mainly
due to skin friction at low Re, however, and is not very sensitive to &,. A drag mechanism based
on a differential velocity of the half-strokes was therefore proposed (Bennett 1973), such that
the downstroke velocity and drag were greater than the upstroke. However, the small wasp
Encarsia was found to use a horizontal stroke plane and a circulatory lift mechanism (Weis-Fogh
1973; Lighthill 1973; Ellington 1975). I have also filmed the small fringe-winged insect Thrips
physapus and the fruit fly Drosophila melanogaster (Ellington 1983); the kinematics and
aerodynamics are very similar to Encarsia. Ironically the drag mechanism does not operate for
small insects, for which it was predicted, but rather for a large one at higher Reynolds number
(about 2800). The pressure drag during the downstroke is much greater than the skin friction
drag of the upstroke at high Re, and so the need for a velocity differential is eliminated.

TABLE 1. RESULTS FROM THE QUASI-STEADY ANALYSIS

(References: 1, Weis-Fogh (1972); 2, Weis-Fogh (1973); 3, Ellington (1975); 4, R. A. Norberg (1975);
5, U. M. Norberg (1975); 6, U. M. Norberg (1976); 7, present study.)

species Cy, Re ref.

horizontal stroke plane

Amazilia fimbriata fluviatilis 1.8 6100 (1)
Melolontha vulgaris 0.6 3900 (2)
Manduca sexta 1.2 5400 (2)
Bombus terrestris 1.2 3600 (2)
Apis mellifera 0.8 1600 (2)
Eristalis tenax 0.9 1600 (2)
Tipula sp. 0.8 630 (2)
Drosophila virilis 0.8 210 (1)
Encarsia formosa 1.6 23 3)
inclined stroke plane
Plecotus auritus 34 15000 (6,7)
Ficedula hypoleuca 5-6 11000 (5,7)
Aeschna juncea 34 1900 (4,7)
vertical stroke plane
Pieris brassicae 0 2800 (7)

Equation (2) of the blade-element analysis could be applied to the Large Cabbage White
butterfly, but a constant value of Cp py, on the downstroke is unlikely because of pressure
interference from the opposite wings. A different aerodynamic approach has been developed,
therefore, based on the vortex pattern created by the wing motion. Air rushes into the gap
between the wings as they fling open at the beginning of the downstroke, producing a sink
motion bounded by the vorticity on the wing surfaces and the free vortex lines connecting the
leading edges and the trailing edges (figure 44). This flow pattern is maintained and
strengthened during the downstroke, resulting in a large-core vortex ring (figure 4d). The
reaction force and kinetic energy associated with this ring have been estimated from flow
visualization photographs. Although this flight mechanism is conceptually quite simple, many
subtle modifications to the flow are effected by wing twisting and flexibility, and a detailed
analysis will be presented elsewhere (Ellington 1983).
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10 C.P.ELLINGTON

4. THE PROOF-BY-CONTRADICTION

The mean lift coefficient has been chosen in all of the hovering analyses to test the quasi-steady
assumption. If Cy, is greater than the maximum steady-state lift coefficient CL, max,> then the
assumption is contradicted and unsteady flight mechanisms must be invoked. When C7, is about
equal to Cy, m,y the test is not conclusive: some variation of the lift coefficient is likely during
a cycle, and instantaneous values may then exceed the mean.

Values of (1, max are not known for the animals in table 1. For the insects we may note a
value of 1.1 at Re about 2000 for the flat forewing of a desert locust, which rises to 1.3 when
the vannal region is depressed as a flap (Jensen 1956). Nachtigall (1977) measured a smaller
CL, max of 0.85, however, for a crane-fly ( Tipula oleracea) wing at a similar Re of 1500. Vogel
(1967) found a value of 0.6 for a flat Drosophila virilis wing at a lower Re of 200, which increases
to 0.8 for a cambered wing; his results are very similar to those of Thom & Swart (1940) for
a flat-bottomed aerofoil in this low Re range. Of the insects in table 1, Encarsia and Aeschna
are the only examples where Cy, definitely exceeds CL, max for the relevant Re, and unsteady
effects are therefore indicated. The flight mechanism of Pieris has already been outlined and
must also be considered as unsteady. Values of Cy, for the remaining insects are uncomfortably
close in general to the expected values of Cp, .y, and several lie in the region of uncertainty
between Jensen’s and Nachtigall’s results. Because of this and the large margin of error in
Weis-Fogh’s (1973) analysis, no firm conclusions can be drawn concerning these insects.

The values of Cy, 1,4 for bird and bat wings are more controversial than those for insects.
The wings are thin and highly cambered, and generally operate at Re between 10* and 10°.
Experiments on similar aerofoil sections have found Cy, 1, up to 1.6; a very strong camber
or an effective increase in camber resulting from leading edge and trailing edge flaps can raise
the value to about 2.5 (Schmitz 1957; Abbott & Doenhoff 1959 ; Mises 1959 ; Tucker & Parrott
1970; Hoerner & Borst 1975). Which of these sections best respresents avian and bat wings
isnotclear. Primary separation on the downstroke of birds may function asslotted or muiti-slotted
flaps (Graham 1932), which can produce values of C, pax in excess of 3. The alula of bird
wings is commonly raised in slow and hovering flight, increasing the lift some 25 % by acting
as a Handley-Page leading edge slot (Nachtigall & Kempf 1971). These comparisons indicate
that Cy, n,x may be about 1.6 for the wings, and possibly much more.

Measurements on bird wings and wing models suggest that these values are too high. Even
with the alula raised, C, p,x for the wing of a house sparrow Passer domesticus is only 1.1 at
Re 16000, and for a European blackbird Turdus merula it is only 0.8 at Re 24000 (Nachtigall
& Kempf 1971). Measurements from many other bird wings over an Re range of 10000-50 000
are much the same: 0.7-1.2 (Withers 1981). There are problems of course, to mounting a wing
in a realistic attitude in a wind tunnel. Studies on wing models of the pigeon Columba livia show
a similar range of values, however, from 0.8 to 1.2 (Nachtigall 1979). For gliding birds and
bats values around 1.5 are found for the maximum lift coefficient based on wing area
(Pennycuick 1968, 1971; Tucker & Parrott 1970), but when the tail area is included as a lifting
surface Cp, max drops to about 1.3 for the pigeon (Pennycuick 1968). The values of Cp, yax
actually measured for bird wings and wing models are thus well below those that might be
expected.

For the hummingbird C;, is 1.8, which Weis-Fogh (1973) accepted as possible under
quasi-steady conditions. Judging by the results above, I think that this is unlikely and unsteady
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THE QUASI-STEADY ANALYSIS OF HOVERING FLIGHT 11

effects will then be significant. For Plecotus Cy, is 3—4, which should be greater than Cp, max
for a bat wing. The quasi-steady assumption fails for Ficedula as well.

The results of the analysis can now be summarized for the kinematic groups. The animals
using an inclined or vertical stroke plane rely on unsteady flight mechanisms, as concluded by
Weis-Fogh (1973) ; the quasi-steady mechanism is insufficient even as an approximation to the
aerodynamic forces. Of the animals using a horizontal stroke plane, Encarsia must use an
unsteady mechanism, and this is probably true for the hummingbird as well. The proof is not
conclusive for the remaining animals, but their values of Cy, are very close to CL, max-

From such results Weis-Fogh (1973) concluded that most animals hovering with a horizontal
stroke plane rely on the quasi-steady flight mechanism. However, three points must be borne
in mind when interpreting these results. If Cp, does not exceed Cp, may, then the proof-by-
contradiction only demonstrates that the quasi-steady assumption cannot be discounted ; it does
not prove that the assumption is true. Furthermore, some instantaneous values of the lift
coefficient are likely to be greater than the mean Cy, over the cycle. And finally, the mean lift
in unsteady motion can be substantially smaller than the quasi-steady estimate because of the
Wagner effect, so the wings cannot actually achieve the maximum lift during hovering that
is predicted by Cy, ax (paper IV). In the light of these last two points, the close agreement
between Cp, and Cp, 4y could indicate that the quasi-steady mechanism is not able to provide
sufficient lift for hovering. The example of the hummingbird could also lead to a conclusion
contrary to Weis-Fogh’s. The kinematics of most insects are similar to those of the hummingbird,
and it would be surprising if different flight mechanisms were involved; if the quasi-steady
explanation is indeed inadequate for the hummingbird, then it might not apply to the insects
either. Much more research is obviously required before Weis-Fogh’s conclusion can be
substantiated or disproved.

5. OUTLINE OF THE PRESENT STUDY

The aerodynamics of hovering insect flight are re-examined in this series of papers, to evaluate
the roles of quasi-steady and unsteady aerodynamic mechanisms. Any aerodynamic study must
be based on accurate kinematic and morphological data, and the previous studies have usually
been unsatisfactory in this respect: the amplitude of wing motion was often determined only
by visual estimation, some of the data used by Weis-Fogh (1973) were from insects in slow
forward flight, and the morphological and kinematic data were not from the same animals in
the analyses of Aeschna, Ficedula and Amazilia. Papers II and III present complete data sets for
a variety of insects to be used in this study.

Weis-Fogh (1973) proposed two unsteady flight mechanisms for animals where the
quasi-steady assumption fails, based on an aerodynamic interpretation of the wing kinematics.
This approach is followed in paper IV to discuss the possible roles of different aerodynamic
mechanisms.

The flight mechanisms cohsidered in paper IV cannot be directly incorporated into the
blade-element theory. A more generalized vortex theory is therefore developed in paper V,
which calculates the mean lift for unsteady as well as quasi-steady mechanisms. The theory
also provides more accurate estimates for the induced velocity and induced power than
previously possible.

The new flight data, aerodynamic mechanisms and vortex theory are all combined in paper
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VI for an analysis of the flight mechanisms, their power requirements, and other mechanical
considerations of hovering flight.

This study would not have been possible without the help, encouragement and guidance of
three men: the late Professor T. Weis-Fogh, who inspired the initial lines of research, Dr
K. E. Machin, whose many talents and enthusiastic support were vital to the fruition of much
work, and Mr G. G. Runnalls, whose photographic expertise was invaluable. To these three,
I extend my warmest gratitude.

6. SYMBOL TABLE

This table contains all of the major symbols in this series of papers. Except for a few general symbols, the paper
where each symbol is defined is given below. Some symbols are defined formally by equations, and this is indicated
by XX.xx, where XX is the paper number and xx is the equation number within that paper. A ‘hat’ denotes a
non-dimensional form of a symbol. Other modifications to symbols obey the following rules unless a special definition
is presented below: subscripts ‘max’ and ‘min’ refer to maximum and minimum values, a bar over the symbol
indicates a time-averaged mean value, a prime denotes a force per unit span, and an asterisk represents mechanical
power per unit body mass.

paper or

symbol equation no. definition
a A% axial separation of vortex rings in the far wake
4 A" cross-sectional area of the far wake
4, V.10 area of the actuator disc
A, A" area of the vortex sheet produced by a half-stroke
4 \' rolled-up area of that vortex sheet
R I1.4 aspect ratio of the wing pair
b A" radius of vortex rings in the far wake
b, A" radius of vortex rings at the actuator disc
¢ II chord of the wing
¢ I1.5 mean chord
¢ II cft
C V.34 self-induced component of the vortex ring velocity
Cp drag coefficient
Cp,t Iv.7 Cp, for a flat plate parallel to the flow
Cp, pro profile drag coefficient
Cy, lift coefficient
d I1.17 mean diameter of body/body length
dfu III ratio of duration of downstroke to upstroke
D VI magnitude of the mean profile drag vector
D VI1.32 D/mg
D, profile drag
A v frequency of lift impulses
f VI f/wingbeat frequency
F aerodynamic force on a wing

or
F \'% the force from a momentum jet
g gravitational acceleration
k I1.11 mean wing thickness/wing length
I v circulatory lift impulse
I V.5 non-dimensional form of 7
1, A" the impulse required for weight support

or
1 11 moment of inertia
I, II moment of inertia for animal body
I, II moment of inertia for the virtual mass of a wing pair
I, II moment of inertia for the mass of a wing pair
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I11.23
V.31
V.33
I1.18
I1
I1.20
II
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advance ratio

specific induced power factor

component of the vortex ring velocity due to other rings in the wake
distance from anterior end of body to centre of mass/body length
distance from forewing base axis to centre of body mass/body length
radius of gyration for the body/body length

body length

body length/wing length

lift

mean lift/mg

body mass

mass of wing pair

My, /m

the kth moment of wing mass about the wing base
wingbeat frequency

disc loading

wing loading

aerodynamic power

power required to accelerate mass and virtual mass of the wings
induced power

mechanical power output of muscle

P, per unit weight of muscle

profile power

Rankine-Froude estimate of induced power

radial position along the wing

r/wing length

non-dimensional radius of the £th moment of wing mass
non-dimensional radius of the £th moment of wing area
non-dimensional radius of the kth moment of virtual mass
wing length

Reynolds number

spacing parameter

wing area

kth moment of wing area

time

t/wingbeat period

flapping velocity of the wing

relative velocity of the wing

flapping velocity of the wing tip

axial velocity of vortex ring

virtual mass of a wing pair

non-dimensional virtual mass of a wing pair

kth moment of virtual mass

flight velocity

V/nR = number of wing lengths travelled per wingbeat
axial wake velocity in the far wake

axial wake velocity at the actuator disc = induced velocity
Rankine-Froude estimate of w

Rankine-Froude estimate of w,

distance from leading edge to axis of wing rotation

Xo/c

geometrical angle of attack

angle of incidence

zero-lift angle of attack

effective angle of attack

effective angle of incidence

half-angle between chords during fling

stroke plane angle
value of #in ‘true’ hovering
relative stroke plane angle

13
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v VI.13 rotational lift coefficient
I circulation
I; v non-dimensional circulation (=1I/I,,,)
r A% mean of Ii over area of vortex sheet
r A\ mean of I'} over area of vortex sheet
I, \'% circulation of a pulsed Froude actuator disc
é VI.34 magnitude of the mean profile drag/mean of the magnitude of the profile drag
€ IV.14 downwash angle
or
€ A\ core radius of vortex ring in far wake
€ A% core radius of vortex ring at actuator disc
Ul III roll angle
Na VI.53 aerodynamic efficiency
6 111.22 angle of elevation of wing with respect to stroke plane
A v distance travelled by wing element/chord
4 V.17 value of A over a half-stroke
4 IV.18 mean distance travelled by wing over a half-stroke/mean chord
v kinematic viscosity of air
I3 III angle between mean flight path and the horizontal
P mass density of air
Py II mass density of the body
Pw II mass density of the wing
o V.43 spatial correction factor for induced power
T V.44 temporal correction factor for induced power
] positional angle of wing in the stroke plane
) I11.24 non-dimensional form of ¢
] stroke angle
X III angle between longitudinal body axis and the horizontal
Xo II1 free body angle
© III angular velocity during pronation and supination
o) III mean angular velocity/wingbeat frequency
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